PLP-Dependent Enzymes
نویسندگان
چکیده
The main focus of this special issue is on structural, functional, and biomedical studies on pyridoxal-5-phosphate(PLP-) dependent enzymes. The unparalleled catalytic versatility of PLP, the active form of vitamin B6, originates from its unique electron-sinking properties, which stabilize reaction intermediates, thus lowering the activation barrier during catalysis. At least five different protein scaffolds arose during evolution to bind PLP and harness its catalytic functionality. The role of the apoenzyme scaffolds is to assist in the proper orientation of the substrate’s reacting groups relative to the πelectrons of PLP, to promote reactivity and control reaction specificity. In addition, the active site residues interacting with the leaving groups provide either stabilizing or destabilizing interactions to direct catalysis [1]. As a consequence, PLP-dependent enzymes are unrivaled in the variety of reactions they catalyze and the highly diverse metabolic pathways they are involved in, including the conversion of amino acids, one-carbon units, biogenic amines, tetrapyrrolic compounds, and amino sugars. These biocatalysts play also a key role in sulfur assimilation and incorporation in cysteine, biotin, and S-adenosyl methionine. The consequence of their widespread occurrence and crucial importance is that a number of them are current drug targets. For example, inhibitors of γ-aminobutyric acid aminotransferase are used in the treatment of epilepsy [2], serine hydroxymethyltransferase has been identified as a target for cancer therapy [3], and inhibitors of L-DOPA decarboxylase are used in the treatment of Parkinson’s disease [4]. Genetic defects affecting PLP enzymes have been also implicated in a number of diseases, including Primary hyperoxaluria type 1, which is caused by mutations in alanine-glyoxylate aminotransferase [5, 6]. Finally, several PLP enzymes are autoantigens in autoimmune disease, for example, glutamate decarboxylase in type I diabetes [7] and SLA/LP in autoimmune hepatitis [8]. This special issue is therefore devoted to the unique and intriguing features of this group of enzymes. Detailed biochemical characterizations of several members of this clan, for example, C-S lyase, glutamate-1-semialdehyde aminomutase, serine hydroxymethyltransferase, and L-DOPA decarboxylase, are described. An original paper, describing the impact of pathogenic mutations of the enzyme serine palmitoyltransferase on its structure and activity, is also provided. Moreover, a review focusing on the role of alanine-glyoxylate aminotransferase homeostasis in the basic mechanisms of primary hyperoxaluria is included. Recent developments and ideas in the field of PLP-dependent enzymes, with a special emphasis given to applied aspects of this research area, have been summarized.The new insights coming from these studies will be hopefully translated into clinically useful agents for innovative therapies to counteract diseases involving PLP enzymes.
منابع مشابه
PLP-dependent Enzymes: a Powerful Tool for Metabolic Synthesis of Non-canonical Amino Acids
An Overview on PLP-dependent Enzymes Pyridoxal 5’-phosphate (PLP), the biologically active of vitamin B6, was first identified in the mid-forties as the cofactor for the transamination reaction. Since then, PLP-dependent enzymes have been the focus of extensive biochemical research. The interest aroused by these enzymes is due to their unrivalled catalytic versatility and their widespread invol...
متن کاملMolecular and phylogenetic analysis of pyridoxal phosphate-dependent acyltransferase of Exiguobacterium acetylicum.
The pyridoxal-5'-phosphate (PLP)-dependent family of enzymes is a very diverse group of proteins that metabolize small molecules like amino acids and sugars, and synthesize cofactors for other metabolic pathways through transamination, decarboxylation, racemization, and substitution reactions. In this study we employed degenerated primer-based PCR amplification, using genomic DNA isolated from ...
متن کاملCrystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms.
The structures of tomato 1-aminocyclopropane-1-carboxylate synthase (ACS) in complex with either cofactor pyridoxal-5'-phosphate (PLP) or both PLP and inhibitor aminoethoxyvinylglycine have been determined by x-ray crystallography. The structures showed good conservation of the catalytic residues, suggesting a similar catalytic mechanism for ACS and other PLP-dependent enzymes. However, the pro...
متن کاملCrystal structure of the pyridoxal-5'-phosphate-dependent serine dehydratase from human liver.
L-serine dehydratase (SDH), a member of the beta-family of pyridoxal phosphate-dependent (PLP) enzymes, catalyzes the deamination of L-serine and L-threonine to yield pyruvate or 2-oxobutyrate. The crystal structure of L-serine dehydratase from human liver (hSDH) has been solved at 2.5 A-resolution by molecular replacement. The structure is a homodimer and reveals a fold typical for beta-family...
متن کاملFunctional evolution of PLP-dependent enzymes based on active-site structural similarities.
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014